
Review Paper on Using Procedural Content
Generation & Difficulty Curves

Paritosh Desai*1, Ninad Kulkarni*2, Suraj Jaiswal*3, Sachin Chauthe*4, Prof. Yogini Bazaz#1

*1, *2, *3, *4 B.E. Student, Department of Information Technology, Atharva College Of Engineering, Mumbai.
#1 Assistant Professor, Department of Information Technology, Atharva College Of Engineering, Mumbai.

Abstract ---Procedural Content Generation (PCG) is the
branch of AI that deals with generating content
algorithmically. It is used to reduce the cost of content creation
while creating new types of content at a much greater speed
with reduced effort. We aim to implement PCG by using
Vasconcelos Genetic Algorithm (VGA) and the concept of
Difficulty Curves. The obstacles patterns in the game will be
generated procedurally at run time. Since the game focuses on
endless content generation, the random or repetitive obstacle
patterns would reduce the 'fun' factor of the game because
user can get used to it and can also predict the content
generated in such games. The game's content will be generated
on the basis of a difficulty curve which will be adjusted
depending on the progress of the user. The fitness function will
compare the difficulty at any point of the generated content
with the difficulty curve in order to create a game segment
which is as close to the desired difficulty curve as possible.

Keywords—procedural content generation; games; genetic
algorithms; difficulty scaling; game design

I. INTRODUCTION

Gaming, as an industry is growing at an amazing rate and
the expectations that players have from game content are
rising with each released game title. To meet these demands
game development studios incur rising costs in terms of
payment to artists and programmers that supply that content
along with the time required to develop such content. This
gives rise to a unique application of AI algorithms, focusing
more on the creative and artistic side of the game content
rather than the strategic and tactical aspect of it; thus saving
significant expense by producing desirable content
algorithmically.

Procedural content generation (PCG) refers to creating
game content automatically, through algorithmic means. In
this paper, the term game content refers to all aspects of the
game that affect gameplay other than non-player character
(NPC) behaviour and the game engine itself [1].

 Even established game companies can benefit from
PCG, using it to generate 3D worlds, missions and other
types of content. However, the first problem facing a game
designer wanting to incorporate PCG techniques is the loss
of control over the generated content. One of the main
arguments against procedural content generation by the
representatives of the gaming industry, at least when
discussing online content generation, difficulty scaling and
artificial intelligence adaptation, is the lack of reliability.
Due to the manner in which most commercial games are

designed, presenting content that is unplayable to the player
is simply unacceptable.

II. RELATED WORK

Diaz-Furlong Hector Adrian and Solis-Gonzalez Cosio
Ana Luisa [2] have defined a fitness function that doesn’t
depend on the game or the type of content. It calculates the
difference between a difficulty curve set by the designer
and the difficulty curve calculated from the candidate
content. They have stressed on the importance of reviewing
how the designer has set the difficulty pacing throughout
the level.

Pieter Sponck & Co. [3] have listed High-Fitness
Penalizing, Weight Clipping and Top Culling methods for
the purpose of difficulty scaling.

Decker-Davis [4] states that procedurally generated
content reduces the control that a designer has over the
content but the dynamic adjustment of difficulty is one of
the most important aspects of PCG. She also states that the
level of challenge must be pegged at such a level that the
game is found to be engrossing by the player. She mentions
that the player must be put in a position where he has to
consciously choose the path and its consequences.

S. Bakkes and J. van den Herik [5] have proposed a
novel approach towards opponent A.I. which is based on
information mined from previous games, called Case-Based
A.I. They suggest building a cache of data which is
gathered by observing simulations of the games. When a
game is in progress, the A.I. strategy is determined by
forming and matching a player model to the data cache.
This method is able to dynamically adjust the difficulty
according to the strategy employed by the player.

Nathan Sorenson [6] has presented a generative system
which automatically creates video game levels. It allows
high-level design features to be described in a top-down
manner. This method uses a two-population genetic
algorithm of feasible-infeasible candidates. The genotypes
used by the author are Design Elements (DEs) i.e. modular
building blocks that represent units of the level.

II.PROPOSED SYSTEM

A. Difficulty Curves & Procedural Content Generation

 Though PCG overcomes challenges that occur in general
game development, it has certain problems of its own;
dynamic scaling of the difficulty level so as to match to the

Paritosh Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1050-1052

www.ijcsit.com 1050

skill of the player. Also, the content must be correct and
playable. Testing content for correctness and playability
adds to the overhead of PCG content generation.
 By using difficulty curves, some of these issues can be
addressed. The curves allow the difficulty of a level to be
tuned with gradual increments or decrements as per the
wish of the designer.
 We aim to extend the system of difficulty curves used by
Diaz-Furlong [2] so that the curve generation process is
automatic and continuous. It will be based on certain
parameters and randomization. Cubic spline interpolation is
utilized to form a difficulty curve based on several control
points. The number of position of the control points is
based on the following:

 Minimum difficulty point.
 Progress of the player (Time for which the game

has been active)
 Number of difficulty “peak” points.
 Number of difficulty “trough” points.

 The numbers of peak and trough points themselves are
picked randomly over a range depending on the progress
made by the player. The probability of peak point
occurrence will go up as the player moves further into the
game.

III. CONTENT REPRESENTATION

A genetic algorithm will be used to generate a population
of interesting obstacle patterns for the game. Consider one
chunk to be of 5x3 cells. The first and last row will have
“empty” cells. The middle three rows will contain the
obstacles.

For simplicity, consider only three kinds of obstacles:
• Ground level obstacle – The player can jump over

it.
• High-level obstacle – The player can move under

the obstacle.
• Empty-level obstacle – The player can move

simply by running through the obstacle.

Three types of obstacles and an empty cell gives us a chunk
of 9 cells with 4 possibilities for each cell, thus a total of 94
= 6561 different possibilities. However, not all of them will
be playable. Some of them might be playable but will hold
no practical utility value. An algorithm must be used to
identify the interesting patterns by taking into account
factors such as the amount of keystrokes required by the
player to navigate through the chunk. Using this, a
“difficulty rating” will be assigned to each chunk. This
collection of useful patterns will be stored for use in the
game.

Fig 1. All obstacles at top

Fig 2. All obstacles at bottom

Fig 3. No obstacles

Fig 4. Combined top and bottom

IV. LEVEL GENERATION PROCESS

The difficulty curve is designed keeping the theory of flow
in mind [7]. The curve should find a balance between the
player’s skill level and a sense of challenge that’s needed to
engage the player. The curve is defined by specifying
certain points on it. The curve needs to be virtually
limitless since there is no concept of a fixed level
length in the game. The min and max levels of difficulty
on the curve are gradually increased on the curve as
the player makes progress in the game.

Paritosh Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1050-1052

www.ijcsit.com 1051

Fig 5. A sample curve generated for the distance 1-10

Fig 6. Comparison of two adjacent sample curves

1. A. Vasconcelos Genetic Algorithm

VGA (Vasconcelos Genetic Algorithm) [7] will be run
while the game is being played, to map game content to the
difficulty curve. The game designer defines the content’s
representation and designs the difficulty curve that he wants
the content to have. The representation defines the length of
the chromosome for each individual in the population.
These are processed by the difficulty curve calculator
providing the difficulty curve for each individual. This
curve is compared to the curve created by the designer and
calculates the fitness value of the chromosome. Finally, the
chromosome with the best fitness is output from the
generator.

The two points to be noted are that firstly, the difficulty
curve is a non-constant in our game. The shape and
characteristics of the curve will change to reflect the
progress of the player. Secondly, the genetic algorithm will
be creating the game level at a level of abstraction since it is
essentially combining chunks which have been assigned a
difficulty rating already. However, these chunks will be re-
rated depending on the previously held rating of the chunk
itself as well as the ratings of the chunks preceding and
succeeding it.

B. Curve Generation Algorithm

Step 1:
a) N ← 30-50 (individuals in the population)
b) Pc ← 0.7-0.9 (probability of crossover)
c) Pm ← 0.005 (probability of mutation)
d) G ← 20-200 (number of generations)
Step 2: Calculate β (the number of bits to mutate) as:

β = ceiling [N × l ×Pm] where l = bits in the individuals
genome (throughout we assume binary encoding of the
solutions).

The above steps are part of the VGA with their key
parameter values. Further experimentation is required to
identify the optimum values. It is our intent to run
simulations and determine the parameter values which
would allow for the most efficient execution of the
algorithm, particularly the number of generations. Since the
level generation process is never-ending in a game of this
nature, it is imperative that a feasible candidate must be
generated in as few generations as possible.

Fig 7. Block diagram-overview of PCG process

 V. CONCLUSION

Thus, we believe that it is possible to create game levels
that can reasonably compete with the quality of content that
is created by a human game designer and in some cases
 go even beyond the ability of a human game designer. The
content meets the requirements of the scenario, is perfectly
playable and has a fun value as well.

VI. REFERENCES
[1] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne,

“Search-based procedural generation: a taxonomy and survey” IEEE
Transactions on Computational Intelligence and AI in Games,
September 2011.

[2] Diaz-Furlong Hector Adrian, An Approach to Level Design Using
Procedural Content Generation and Difficulty Curves,
Computational Intelligence and AI in Games, IEEE Transactions.

[3] P. Spronck, I. Sprinkhuizen-Kuyper and E. Postma, “Dificulty
scaling of game AI”, Proc. Fifth Int’l Conf. Intelligent Games and
Simulation, pp. 33-37, 2004.

[4] H.M. Decker-Davis,
http://www.gamecareerguide.com/features/1120/
tuning_difficulty_when_making_.php

[5] S. Bakkes, P. Spronck and J. van den Herik, “Rapid and Reliable
Adaptation of Video Game AI”, IEEE Transactions on
Computational Intelligence and AI in Games, vol. 1, no. 2, 2009

[6] Nathan Sorenson, Philippe Pasquier, “Towards a Generic
Framework for Automated Video Game Level Creation”
Applications of Evolutionary ComputationLecture Notes in
Computer Science, Volume 6024, 2010.

[7] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience, Harper Collins, 1990.

[8] A. F. Kuri-Morales, “Solution of simultaneous non-linear equations
using genetic algorithms”, WSEAS Transactions on Systems, pp. 44-
51, WSEAS Press, Issue 1, Vol 2

Paritosh Desai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1050-1052

www.ijcsit.com 1052

