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Abstract ---Procedural Content Generation (PCG) is the 
branch of AI that deals with generating content 
algorithmically. It is used to reduce the cost of content creation 
while creating new types of content at a much greater speed 
with reduced effort. We aim to implement PCG by using 
Vasconcelos Genetic Algorithm (VGA) and the concept of 
Difficulty Curves. The obstacles patterns in the game will be 
generated procedurally at run time. Since the game focuses on 
endless content generation, the random or repetitive obstacle 
patterns would reduce the 'fun' factor of the game because 
user can get used to it and can also predict the content 
generated in such games. The game's content will be generated 
on the basis of a difficulty curve which will be adjusted 
depending on the progress of the user. The fitness function will 
compare the difficulty at any point of the generated content 
with the difficulty curve in order to create a game segment 
which is as close to the desired difficulty curve as possible. 

Keywords—procedural content generation; games; genetic 
algorithms; difficulty scaling; game design 

I.  INTRODUCTION 

Gaming, as an industry is growing at an amazing rate and 
the expectations that players have from game content are 
rising with each released game title. To meet these demands 
game development studios incur rising costs in terms of 
payment to artists and programmers that supply that content 
along with the time required to develop such content. This 
gives rise to a unique application of AI algorithms, focusing 
more on the creative and artistic side of the game content 
rather than the strategic and tactical aspect of it; thus saving 
significant expense by producing desirable content 
algorithmically. 

Procedural content generation (PCG) refers to creating 
game content automatically, through algorithmic means. In 
this paper, the term game content refers to all aspects of the 
game that affect gameplay other than non-player character 
(NPC) behaviour and the game engine itself [1]. 

 Even established game companies can benefit from 
PCG, using it to generate 3D worlds, missions and other 
types of content. However, the first problem facing a game 
designer wanting to incorporate PCG techniques is the loss 
of control over the generated content. One of the main 
arguments against procedural content generation by the 
representatives of the gaming industry, at least when 
discussing online content generation, difficulty scaling and 
artificial intelligence adaptation, is the lack of reliability. 
Due to the manner in which most commercial games are 

designed, presenting content that is unplayable to the player 
is simply unacceptable. 

II. RELATED WORK

Diaz-Furlong Hector Adrian and Solis-Gonzalez Cosio 
Ana Luisa [2] have defined a fitness function that doesn’t 
depend on the game or the type of content. It calculates the 
difference between a difficulty curve set by the designer 
and the difficulty curve calculated from the candidate 
content. They have stressed on the importance of reviewing 
how the designer has set the difficulty pacing throughout 
the level. 

Pieter Sponck & Co. [3] have listed High-Fitness 
Penalizing, Weight Clipping and Top Culling methods for 
the purpose of difficulty scaling. 

Decker-Davis [4] states that procedurally generated 
content reduces the control that a designer has over the 
content but the dynamic adjustment of difficulty is one of 
the most important aspects of PCG. She also states that the 
level of challenge must be pegged at such a level that the 
game is found to be engrossing by the player. She mentions 
that the player must be put in a position where he has to 
consciously choose the path and its consequences. 

S. Bakkes and J. van den Herik [5] have proposed a 
novel approach towards opponent A.I. which is based on 
information mined from previous games, called Case-Based 
A.I. They suggest building a cache of data which is 
gathered by observing simulations of the games. When a 
game is in progress, the A.I. strategy is determined by 
forming and matching a player model to the data cache. 
This method is able to dynamically adjust the difficulty 
according to the strategy employed by the player. 

Nathan Sorenson [6] has presented a generative system 
which automatically creates video game levels. It allows 
high-level design features to be described in a top-down 
manner. This method uses a two-population genetic 
algorithm of feasible-infeasible candidates. The genotypes 
used by the author are Design Elements (DEs) i.e. modular 
building blocks that represent units of the level. 

II.PROPOSED SYSTEM 

A. Difficulty Curves & Procedural Content Generation 

 Though PCG overcomes challenges that occur in general 
game development, it has certain problems of its own; 
dynamic scaling of the difficulty level so as to match to the 
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skill of the player. Also, the content must be correct and 
playable. Testing content for correctness and playability 
adds to the overhead of PCG content generation. 
 By using difficulty curves, some of these issues can be 
addressed. The curves allow the difficulty of a level to be 
tuned with gradual increments or decrements as per the 
wish of the designer. 
 We aim to extend the system of difficulty curves used by 
Diaz-Furlong [2] so that the curve generation process is 
automatic and continuous. It will be based on certain 
parameters and randomization. Cubic spline interpolation is 
utilized to form a difficulty curve based on several control 
points. The number of position of the control points is 
based on the following: 
 

 Minimum difficulty point. 
 Progress of the player (Time for which the game 

has been active) 
 Number of difficulty “peak” points. 
 Number of difficulty “trough” points. 

 
 The numbers of peak and trough points themselves are 
picked randomly over a range depending on the progress 
made by the player. The probability of peak point 
occurrence will go up as the player moves further into the 
game. 

III. CONTENT REPRESENTATION 

A genetic algorithm will be used to generate a population 
of interesting obstacle patterns for the game. Consider one 
chunk to be of 5x3 cells. The first and last row will have 
“empty” cells. The middle three rows will contain the 
obstacles.  

 
For simplicity, consider only three kinds of obstacles: 
• Ground level obstacle – The player can jump over 

it. 
• High-level obstacle – The player can move under 

the     obstacle. 
• Empty-level obstacle – The player can move 

simply by running through the obstacle. 
 

Three types of obstacles and an empty cell gives us a chunk 
of 9 cells with 4 possibilities for each cell, thus a total of 94 
= 6561 different possibilities. However, not all of them will 
be playable. Some of them might be playable but will hold 
no practical utility value. An algorithm must be used to 
identify the interesting patterns by taking into account 
factors such as the amount of keystrokes required by the 
player to navigate through the chunk. Using this, a 
“difficulty rating” will be assigned to each chunk. This 
collection of useful patterns will be stored for use in the 
game.  

 

 

Fig 1. All obstacles at top 

 

Fig 2. All obstacles at bottom 

 

Fig 3. No obstacles 

 

Fig 4. Combined top and bottom 

IV. LEVEL GENERATION PROCESS 

The difficulty curve is designed keeping the theory of flow 
in mind [7]. The curve should find a balance between the 
player’s skill level and a sense of challenge that’s needed to 
engage the player. The curve is defined by specifying 
certain points on it. The  curve needs  to  be virtually  
limitless  since  there  is  no  concept  of  a  fixed level 
length in the game. The min  and  max  levels  of  difficulty  
on  the  curve  are  gradually  increased  on  the  curve  as  
the player makes progress in the game.  
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Fig 5. A sample curve generated for the distance 1-10

 
Fig 6. Comparison of two adjacent sample curves 

1. A. Vasconcelos Genetic Algorithm 

VGA (Vasconcelos Genetic Algorithm) [7] will be run 
while the game is being played, to map game content to the 
difficulty curve. The game designer defines the content’s 
representation and designs the difficulty curve that he wants 
the content to have. The representation defines the length of 
the chromosome for each individual in the population. 
These are processed by the difficulty curve calculator 
providing the difficulty curve for each individual. This 
curve is compared to the curve created by the designer and 
calculates the fitness value of the chromosome. Finally, the 
chromosome with the best fitness is output from the 
generator. 

The two points to be noted are that firstly, the difficulty 
curve is a non-constant in our game. The shape and 
characteristics of the curve will change to reflect the 
progress of the player. Secondly, the genetic algorithm will 
be creating the game level at a level of abstraction since it is 
essentially combining chunks which have been assigned a 
difficulty rating already. However, these chunks will be re-
rated depending on the previously held rating of the chunk 
itself as well as the ratings of the chunks preceding and 
succeeding it. 

B.  Curve Generation Algorithm 

Step 1: 
a) N ← 30-50 (individuals in the population) 
b) Pc ← 0.7-0.9 (probability of crossover) 
c) Pm ← 0.005 (probability of mutation) 
d) G ← 20-200 (number of generations) 
Step 2: Calculate β (the number of bits to mutate) as: 

β = ceiling [N × l ×Pm] where l = bits in the individuals 
genome (throughout we assume binary encoding of the 
solutions). 

The above steps are part of the VGA with their key 
parameter values. Further experimentation is required to 
identify the optimum values. It is our intent to run 
simulations and determine the parameter values which 
would allow for the most efficient execution of the 
algorithm, particularly the number of generations. Since the 
level generation process is never-ending in a game of this 
nature, it is imperative that a feasible candidate must be 
generated in as few generations as possible. 

 
Fig 7. Block diagram-overview of PCG process 

 V. CONCLUSION 

Thus, we believe that it is possible to create game levels 
that can reasonably compete with the quality of content that 
is created by a human game designer and in some cases
 go even beyond the ability of a human game designer. The 
content meets the requirements of the scenario, is perfectly 
playable and has a fun value as well. 
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